
GR-DVDVX44EG/EK,DVX77EG/EK,DVX88EG

JVC

SERVICE MANUAL

DIGITAL VIDEO CAMERA

GR-DVX44EG/EK,DVX77EG/EK,DVX88EG

SPECIFICATIONS

	Camcorder
For General	
Power supply	: DC 11.0 V == (Using AC Adapter) DC 7.2 V == (Using battery pack)
Power consumption	
LCD monitor off, viewfinder on	: Approx. 4.4 W (GR-DVX88/DVX77), Approx. 4.0 W (GR-DVX44)
LCD monitor on, viewtinder off Dimensions (W x H x D)	: Approx. 5.2 W (GR-DVX88/DVX77), Approx. 4.8 W (GR-DVX44) : 51 mm x 120 mm x 97 mm
Difficusions (W X I I X D)	(with the LCD monitor closed and the viewfinder pushed back in)
Weight	: Approx. 500 g (GR-DVX88/DVX77)
	Approx. 470 g (GR-DVX44)
Operating temperature	: 0°C to 40°C
Operating humidity	: 35% to 80%
Storage temperature	: –20°C to 50°C
Pickup	: 1/4" CCD
Lens Filter diameter	: F 1.8, f = 3.6 mm to 36 mm, 10:1 power zoom lens : ø27 mm
LCD monitor	: 2.5" diagonally measured, LCD panel/TFT active matrix system
Viewfinder	: Electronic viewfinder with 0.44" colour LCD
Speaker	: Monaural
For Digital Video Camera	
Format	: DV format (SD mode)
Signal format	: PAL standard
Recording/Playback format	: Video: Digital component recording
	: Audio: PCM digital recording, 32 kHz 4-channel (12-bit), 48 kHz 2-channel (16-bit)
Cassette	: Mini DV cassette
Tape speed	: SP: 18.8 mm/s
	LP: 12.5 mm/s
Maximum recording time	: SP: 80 min.
(using 80 min. cassette)	LP: 120 min.
For Digital Still Camera (GR-DV	X88/DVX77 only)
Storage media	: SD Memory Card/MultiMediaCard
Compression system	: Still image : JPEG (compatible)
Moving image : MPEG4 (compatib	
File size Picture quality	: 2 modes (XGA: 1024 x 768 pixels/VGA: 640 x 480 pixels) : 2 modes (FINE/STANDARD)
Approximate number of storable in	
	8 MB], with Sound Effects pre-stored)
FINE	: 40 (VGA), 20 (XGA)
STANDARD	: 130 (VGA), 60 (XGA)
(with an optional memory card [16	
FINE	: 100 (VGA), 40 (XGA)
STANDARD (with an entional memory card [3]	: 290 (VGA), 140 (XGA)
(with an optional memory card [32 FINE	
STANDARD	: 210 (VGA), 90 (XGA) : 610 (VGA), 290 (XGA)
(with an optional memory card [64	
FINE	: 430 (VGA), 190 (XGA)

: 430 (VGA), 190 (XGA) : 1230 (VGA), 600 (XGA)

For Connectors

Video output : 1 V (p-p), 75 Ω , analogue : 300 mV (rms), 1 k Ω , analogue, stereo Audio output Headphone output (GR-DVX88/DVX77 only)

: 4-pin, IEEE 1394 compliant

Input/output (GR-DVX88 only) Output (GR-DVX77/DVX44 only) : 4-pin, IEEE 1394 compliant

AC adapter AP-V10EG

Power requirement Output Dimensions (W x H x D)

: AC 110 V to 240 V √, 50 Hz/60 Hz : DC 11 V == , 1 A : 59 mm x 31 mm x 84 mm Approx. 140 g (not including Power Cord)

: 52 mm x 22 mm x 73 mm Dimensions (W x H x D) Weight

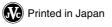
For Connectors

USB (GR-DVX88/DVX77 only) EDIT (GR-DVX88/DVX77 only)

Output

: Y : 1 V (p-p), 75 Ω , analogue C : 0.29 V (p-p), 75 Ω , analogue : ø3.5 mm, 4-pole

JLIP (GR-DVX44 only) PC (DIGITAL PHOTO) (GR-DVX44 only)


: ø2.5 mm. 3-pole

Specifications shown are for SP mode unless otherwise indicated. E & O.E. Design and specifications subject

: Type B : ø3.5 mm, 2-pole

VICTOR COMPANY OF JAPAN, LIMITED **VIDEO DIVISION**

S40894

TABLE OF CONTENTS

Section	Title	Page	Sec	tion	Title Pa	age
Importar	nt Safety Precautions		4.6		SCHEMATIC DIAGRAM	
INSTRU					DVX77EG/EK, GR-DVX88EG]4	
					AIN SCHEMATIC DIAGRAM [GR-DVX44EG/EK] 4	4-15
	SSEMBLY		4.8		AIN SCHEMATIC DIAGRAM	4 47
	ORE ASSEMBLY AND DISASSEMBLY.		1 Q		DVX77EG/EK, GR-DVX88EG]	
	Precautions		4.10	PRI	E/REC SCHEMATIC DIAGRAM	4-21
	ssembly and disassemblyestination of connectors		4.11	VC	UT SCHEMATIC DIAGRAM [GR-DVX44EG/EK] 4	4-23
	Disconnection of Connectors (Wires)			V C	UT SCHEMATIC DIAGRAM	
	S AND TOOLS REQUIRED FOR DISASS				-DVX77EG/EK, GR-DVX88EG]	
	EMBLY AND ADJUSTMENT				M DSP SCHEMATIC DIAGRAM [GR-DVX44EG/EK] . 4	4-27
1.2.1 T	ools required for adjustments	1-2	4.14		/I DSP SCHEMATIC DIAGRAM -DVX77EG/EK, GR-DVX88EG]4	1 20
	ASSEMBLY/ASSEMBLY OF CABINET PA		4 15		A IN SCHEMATIC DIAGRAM	+-23
	ARD ASSEMBLY Disassembly flow chart		4.10		IS SCHEMATIC DIAGRAM IS NOT USED]	4-31
	Disassembly method		4.16		V.DRV SCHEMATIC DIAGRAM	
1.4 DIS	ASSEMBLY OF ® MONITOR ASSEMBLY	′ 1-8			G SCHEMATIC DIAGRAM	4-35
1.4.1	Monitor assembly/Hinge assembly	1-8	4.18	STO	SENS SCHEMATIC DIAGRAM	
1.4.2 F	linge assembly	1-8	4 10		-DVX77EG/EK, GR-DVX88EG]	
	ASSEMBLY OF TO OP BLOCK ASSEMBL				C SCHEMATIC DIAGRAM	+-39
	EMBLY		4.20		-DVX77EG/EK, GR-DVX88EG]	1-41
	Precautions low to remove OP block assembly and CCD b		4.21	MP3	SCHEMATIC DIAGRAM [GR-DVX77EG/EK, GR-DVX88EG]. 4	4-43
1.5.2 F	low to install OP block assembly and CCD b	oard assembly 1-9		USI	B DRV SCHEMATIC DIAGRAM	
1.5.4 F	Replacement of service parts	1-9			-DVX77EG/EK, GR-DVX88EG]	
1.6 DIS	ASSEMBLY OF ${f @}$ E. VF ASSEMBLY	1-10	4.23	W/E	S SCHEMATIC DIAGRAM	4-47
1.6.1	E. VF assembly	1-10			D SCHEMATIC DIAGRAM	
	ERGENCY DISPLAY				ALLY SCHEMATIC DIAGRAM	
1.8 SEF	RVICE NOTE	1-12	4.27	OP	DRIVER SCHEMATIC DIAGRAM	4-53
2 MEC	HANISM ADJUSTMENT				NITOR SCHEMATIC DIAGRAM4	
	ELIMINARY REMARKS ON ADJUSTMENT	AND REPAIR 2-1	4.29		ICTION SCHEMATIC DIAGRAM 4	4-57
	Precautions		4.30	STI	ROBE SCHEMATIC DIAGRAM	
	lotes on procedure for disassemby/assen		4 21	[GF	-DVX77EG/EK, GR-DVX88EG] DIO AD/DA SCHEMATIC DIAGRAM	4-59
	S AND TÓOLS REQUIRED FOR ĎISASS				N AUDIO SCHEMATIC DIAGRAM	
ASS	EMBLY AND ADJUSTMENT	2-2			P SEL. SCHEMATIC DIAGRAM	
2.2.1	ools required for adjustments ASSEMBLY/ASSEMBLY OF MECHANISI				K SCHEMATIC DIAGRAM	
	General statement		4.35		SENS, CAMERA OPE. UNIT, DECK OPE. ASSY	
2.3.2 E	Explanation of mechanism mode	2-3			O SUB OPE. UNIT SCHEMATIC DIAGRAMS	
2.3.3 N	Nechanism timing chart	2-4			N CIRCUIT BOARD [GR-DVX44EG/EK]	
2.4 DIS	ASSEMBLY/ASSEMBLY OF MECHANISI	M ASSEMBLY 2-5			N CIRCUIT BOARD [GR-DVX77EG/EK, GR-DVX88EG] . 4 A CIRCUIT BOARD	
	ollow chart				O AND JUNCTION CIRCUIT BOARDS	
2.4.2 L	Disassembly/assembly	2-8	4.40		NITOR CIRCUIT BOARD	
2.4.3 L	ist of procedures for disassembly ECKUP AND ADJUSTMENT OF MECHAN				DIO CIRCUIT BOARD	
	CHANISM ADJUSTMENTS		4.42	STI	ROBE, W/B AND JACK CIRCUIT BOARDS 4	4-91
2.6.1 A	ssembling slide deck assembly and main de	eck assembly . 2-16			TAGE CHARTS	
2.6.2 L	ocating tension pole	2-17	4.44	VID	NER SYSTEM BLOCK DIAGRAM 4 EO SYSTEM BLOCK DIAGRAM4	4-97 4 00
	VICE NOTE		4.43	VID	EO 3131EW BEOOK BIAGITAW	+-33
	CONNECTOR CABLE CONNECTION	2-20	5 5	ωрт	SLIST	
	CTRICAL ADJUSTMENT				ING AND ACCESSORY ASSEMBLY <m1></m1>	5-1
-	caution				L ASSEMBLY <m2></m2>	
3.2 SET	UP	3-2			HANISM ASSEMBLY <m3></m3>	
			5.4	ELEC	TRONIC VIEWFINDER ASSEMBLY <m4></m4>	5-8
	RTS AND DIAGRAMS		5.5	MON	ITOR ASSEMBLY <m5></m5>	5-9
	OF SCHEMATIC DIAGRAM				TRICAL PARTS LIST	
	BOARD NOTES				DARD ASSEMBLY <01>	
	ARD INTERCONNECTIONS [GR-DVX44I ARD INTERCONNECTIONS	=u/⊏N] 4-3			ARD ASSEMBLY <02> 5 ARD ASSEMBLY <03> 5	
	-DVX77EG/EK, GR-DVX88EG]	4-5			PR BOARD ASSEMBLY <04>	
	CON SCHEMATIC DIAGRAM [GR-DVX4				ON BOARD ASSEMBLY <06>	
4.4 SYS	SCON SCHEMATIC DIAGRAM	•	ST	ROBE	BOARD ASSEMBLY(C,D,E)	5-21
	-DVX77EG/EK, GR-DVX88EG]				BOARD ASSEMBLY <08>	
4.5 PC	F SCHEMATIC DIAGRAM [GR-DVX44E)	غ/⊨K] 4-11			DARD ASSEMBLY <09> 5 ARD ASSEMBLY <11> 5	
			VV/	טם ט	AND AGGENIDLI < 1 1 >	J-24
The follo	wing table lists the differing points l	hetween Models GR-D	/Y//I	EG/EI	C GR-DVY77FG/FK and GR-DVY88FG in this ser	ioe

	GR-DVX44EG	GR-DVX44EG GR-DVX44EK		GR-DVX77EG GR-DVX77EK	
VIDEO FLASH					
DSC FLASH MEMORY	NOT	USED	USED		
DIGITAL SOUND RECODING					
DV INPUT		NOT	USED USED		
HEAD PHONE OUTPUT	NOT	USED	USED		
MEMORY CARD	NOT	USED	USED (8 MB)		
JACK BOX	CU-	V505	CU-V506		
USB CABLE	NOT	USED	USED		
USB TERMINAL		OGLD	OGED		
PC CONNECTION CABLE	IIS	ED	NOT USED		
JLIP/EDIT TERMINAL			INOT USED		

Important Safety Precautions

Prior to shipment from the factory, JVC products are strictly inspected to conform with the recognized product safety and electrical codes of the countries in which they are to be sold. However, in order to maintain such compliance, it is equally important to implement the following precautions when a set is being serviced.

Precautions during Servicing

- Locations requiring special caution are denoted by labels and inscriptions on the cabinet, chassis and certain parts of the product. When performing service, be sure to read and comply with these and other cautionary notices appearing in the operation and service manuals.
- Parts identified by the symbol and shaded () parts are critical for safety.

Replace only with specified part numbers.

Note: Parts in this category also include those specified to comply with X-ray emission standards for products using cathode ray tubes and those specified for compliance with various regulations regarding spurious radiation emission.

Fuse replacement caution notice.
 Caution for continued protection against fire hazard.
 Replace only with same type and rated fuse(s) as specified.

- 4. Use specified internal wiring. Note especially:
 - 1) Wires covered with PVC tubing
 - 2) Double insulated wires
 - 3) High voltage leads
- Use specified insulating materials for hazardous live parts. Note especially:
 - 1) Insulation Tape
- 3) Spacers
- 5) Barrier

- 2) PVC tubing
- 4) Insulation sheets for transistors
- When replacing AC primary side components (transformers, power cords, noise blocking capacitors, etc.) wrap ends of wires securely about the terminals before soldering.

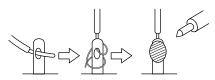


Fig.1

- Observe that wires do not contact heat producing parts (heatsinks, oxide metal film resistors, fusible resistors, etc.)
- 8. Check that replaced wires do not contact sharp edged or pointed parts.
- When a power cord has been replaced, check that 10-15 kg of force in any direction will not loosen it.

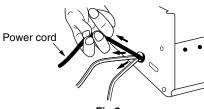


Fig.2

- 10. Also check areas surrounding repaired locations.
- 11. Products using cathode ray tubes (CRTs)
 In regard to such products, the cathode ray tubes themselves, the high voltage circuits, and related circuits are specified for compliance with recognized codes pertaining to X-ray emission.
 Consequently, when servicing these products, replace the cathode ray tubes and other parts with only the specified parts. Under no circumstances attempt to modify these circuits.
 Unauthorized modification can increase the high voltage value and cause X-ray emission from the cathode ray tube.

12. Crimp type wire connector

In such cases as when replacing the power transformer in sets where the connections between the power cord and power transformer primary lead wires are performed using crimp type connectors, if replacing the connectors is unavoidable, in order to prevent safety hazards, perform carefully and precisely according to the following steps.

- 1) Connector part number: E03830-001
- 2) Required tool: Connector crimping tool of the proper type which will not damage insulated parts.
- 3) Replacement procedure
 - Remove the old connector by cutting the wires at a point close to the connector.

Important: Do not reuse a connector (discard it).

Fia.3

(2) Strip about 15 mm of the insulation from the ends of the wires. If the wires are stranded, twist the strands to avoid frayed conductors.

Fig.4

(3) Align the lengths of the wires to be connected. Insert the wires fully into the connector.

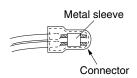


Fig.5

(4) As shown in Fig.6, use the crimping tool to crimp the metal sleeve at the center position. Be sure to crimp fully to the complete closure of the tool.

Fia.6

(5) Check the four points noted in Fig.7.

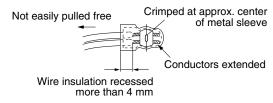
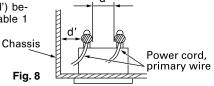


Fig.7

Safety Check after Servicing

Examine the area surrounding the repaired location for damage or deterioration. Observe that screws, parts and wires have been returned to original positions, Afterwards, perform the following tests and confirm the specified values in order to verify compliance with safety standards.

1. Insulation resistance test


Confirm the specified insulation resistance or greater between power cord plug prongs and externally exposed parts of the set (RF terminals, antenna terminals, video and audio input and output terminals, microphone jacks, earphone jacks, etc.). See table 1 below.

2. Dielectric strength test

Confirm specified dielectric strength or greater between power cord plug prongs and exposed accessible parts of the set (RF terminals, antenna terminals, video and audio input and output terminals, microphone jacks, earphone jacks, etc.). See table 1 below.

3. Clearance distance

When replacing primary circuit components, confirm specified clearance distance (d), (d') between soldered terminals, and between terminals and surrounding metallic parts. See table 1 below.

4. Leakage current test

Confirm specified or lower leakage current between earth ground/power cord plug prongs and externally exposed accessible parts (RF terminals, antenna terminals, video and audio input and output terminals, microphone jacks, earphone jacks, etc.).

Measuring Method: (Power ON)

Insert load Z between earth ground/power cord plug prongs and externally exposed accessible parts. Use an AC voltmeter to measure across both terminals of load Z. See figure 9 and following table 2.

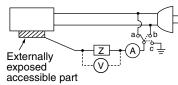


Fig. 9

5. Grounding (Class 1 model only)

Confirm specified or lower grounding impedance between earth pin in AC inlet and externally exposed accessible parts (Video in, Video out, Audio in, Audio out or Fixing screw etc.).

Measuring Method:

Connect milli ohm meter between earth pin in AC inlet and exposed accessible parts. See figure 10 and grounding specifications.

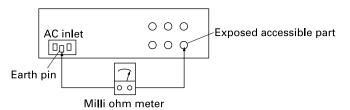


Fig. 10

Grounding Specifications

Region	Grounding Impedance (Z)
USA & Canada	Z ≦ 0.1 ohm
Europe & Australia	Z ≦ 0.5 ohm

AC Line Voltage	Region	Insulation Resistance (R)	Dielectric Strength	Clearance Distance (d), (d')
100 V	lanan	R ≧ 1 MΩ/500 V DC	AC 1 kV 1 minute	d, d' ≧ 3 mm
100 to 240 V	Japan	R ≦ 1 WI22/500 V DC	AC 1.5 kV 1 miute	d, d' ≧ 4 mm
110 to 130 V	USA & Canada	1 M $\Omega \le R \le 12$ M $\Omega/500$ V DC	AC 1 kV 1 minute	d, d' ≧ 3.2 mm
110 to 130 V 200 to 240 V	Europe & Australia	R ≧ 10 MΩ/500 V DC	AC 3 kV 1 minute (Class II) AC 1.5 kV 1 minute (Class I)	$d \ge 4 \text{ mm}$ $d' \ge 8 \text{ mm (Power cord)}$ $d' \ge 6 \text{ mm (Primary wire)}$

Table 1 Specifications for each region

AC Line Voltage	Region	Load Z	Leakage Current (i)	a, b, c
100 V	Japan	ο	i ≦ 1 mA rms	Exposed accessible parts
110 to 130 V	USA & Canada	0.15 μF	i ≦ 0.5 mA rms	Exposed accessible parts
110 to 130 V	Europe & Australia	o	i ≦ 0.7 mA peak i ≦ 2 mA dc	Antenna earth terminals
220 to 240 V	Europe & Australia	ο	i ≦ 0.7 mA peak i ≦ 2 mA dc	Other terminals

Table 2 Leakage current specifications for each region

Note: These tables are unofficial and for reference only. Be sure to confirm the precise values for your particular country and locality.

II

SECTION 1 DISASSEMBLY

1.1 BEFORE ASSEMBLY AND DISASSEMBLY

1.1.1 Precautions

- 1. Be sure to remove the power supply unit prior to mounting and soldering of parts.
- 2. When removing a component part that needs to disconnect the connector and to remove the screw for removing itself, first disconnect the connecting wire from the connector and then remove the screw beforehand.
- 3. When connecting and disconnecting the connectors, be careful not to damage the wire.
- Carefully remove and handle the part to which some spacer or shield is attached for reinforcement or insulation
- 5. When replacing chip parts (especially IC parts), desolder completely first (to prevent peeling of the pattern).
- Tighten screws properly during the procedures.
 Unless specified otherwise, tighten screws at a torque of 0.078N•m(0.8kgf•cm).

1.1.2 Assembly and disassembly

STEP No.	PART	Fig.No.	POINT	NOTE
1	DECK OPE ASSY	Fig.1-3-1	2(S①), (L①) ☆CN①a	_
2	MIC UNIT		2(S②),2(L②) ☆CN②a	NOTE@
3	FRONT COVER ASSY	Fig.1-3-2	COVER(DV),(S3a),3(S3b) 2(S3c),(S3d),STUD(HOOK) (L3) ☆CN3a	NOTE3a NOTE3b
(1)	(2)	(3)	(4)	(5)

- Indicate the disassembly steps. When assembling, perform in the reverse order of these steps. This number corresponds to the number in the disassembly diagram.
- (2) Indicates the name of disassembly/assembly parts.
- (3) Indicates the number in the disassembly diagram.
- (4) Indicates parts and points such as screws, washers, springs which must be removed during disassembly/ assembly.

Symbol Name, Point Screw

L Lock, Pawl, Hook

SD Soldering

☆(Others) Connector, Cover, Bracket, etc.

(Example)

 2 (S①): Remove the two screws (S①) for removing the part ①.

CN ①a: Disconnect the connector ①a.
SD1 : Unsolder at the point SD1.

(5) Precautions on disassembly/assembly.

1.1.3 Destination of connectors

Note: Three kinds of double-arrows in connection tables respectively show kinds of connector/wires.

 \leftrightarrow : Wire

⇔ : Flat wire (FPC, FFC)

⇒ : Board to Board connector

[Example]

CONN. No.		CON	INEC	TOR		Pin No.
①a	DECK OPE ASSY	-	\Leftrightarrow	AUDI0	CN803	6
2 a	AUDIO	CN804	\Leftrightarrow	MIC UNIT	-	4

1.1.4 Disconnection of Connectors (Wires)

Connector

Pull both ends of the connector in the arrow direction, remove the lock and disconnect the flat wire.

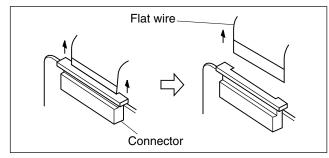


Fig. 1-1-1 Connector 1

Extend the locks in the direction of the arrow for unlocking and then pull out the wire. After removing the wire, immediately restore the locks to their original positions because the locks are apt to come off the connector.

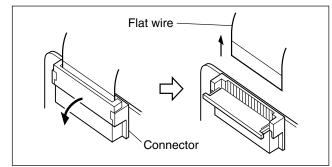


Fig. 1-1-2 Connector 2

B-B connector

Pull the board by both the sides in the direction of the arrow for disconnecting the B-B connector.

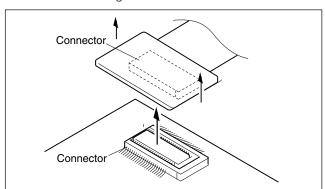


Fig. 1-1-3 Connector 3

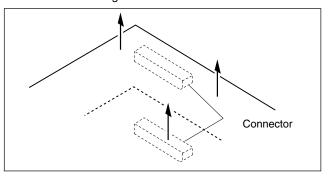


Fig. 1-1-4 Connector 4

1.2 JIGS AND TOOLS REQUIRED FOR DISASSEMBLY, ASSEMBLY AND ADJUSTMENT

1.2.1 Tools required for adjustments

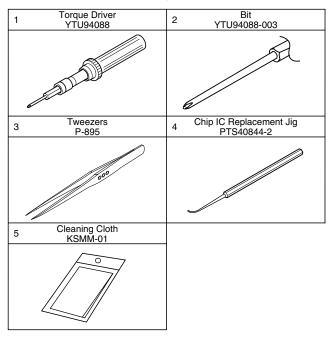


Table 1-2-1

1. Torque driver

Be sure to use to fastening the mechanism and exterior parts because those parts must strictly be controlled for tightening torque.

2. Bit

This bit is slightly longer than those set in conventional torque drivers.

3. Tweezers

To be used for removing and installing parts and wires.

4. Chip IC replacement jig

To be used for adjustment of the camera system.

5. Cleaning cloth

Recommended cleaning cloth to wipe down the video heads, mechanism (tape transport system), optical lens surface.

1.3 DISASSEMBLY/ASSEMBLY OF CABINET PARTS AND BOARD ASSEMBLY

1.3.1 Disassembly flow chart

This flowchart indicates the disassembly step for the cabinet parts and board assembly in order to gain access to item(s) to be serviced. When reassembling, perform the step(s) in reverse order.

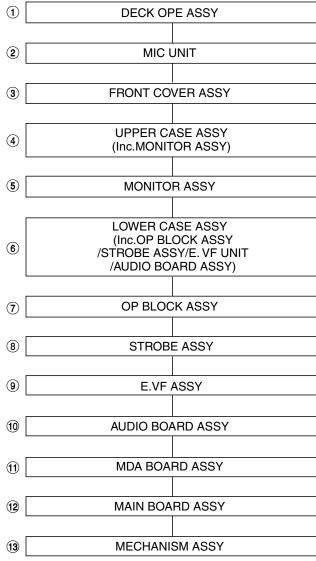


Table 1-3-1

1.3.2 Disassembly method

STEP No.	PART	Fig.No.	POINT	NOTE
1	DECK OPE ASSY	Fig.1-3-1	2(S①), (L①) ☆CN ①a	_
2	MIC UNIT		2(S②), 2(L②) ☆CN ②a	NOTE@
3	FRONT COVER ASSY	Fig.1-3-2	COVER(DV), (S③a), 3(S③b) 2(S③c), (S③d), STUD(HOOK) (L③) ☆CN ③a	NOTE3a NOTE3b
4	UPPER CASE ASSY (Inc.MONITOR ASSY)	Fig.1-3-3	(S④a), 2(L④), LOCK(MONITOR) (S④b), (S④c), (S④d), 2(S④e) ☆CN ④a, ④b, ④c, ④d	NOTE@a NOTE@b NOTE@c
5	MONITOR ASSY	Fig.1-3-4	(S⑤a),(S⑥b)	NOTE®
6	LOWER CASE ASSY (Inc.OP BLOCK ASSY /STROBE ASSY /E. VF ASSY /AUDIO BOARD ASSY)	Fig.1-3-5	☆CN @a, @b,@c, @d, @e (S@a), 4(S@b)	NOTE®a NOTE®b NOTE®c
7	OP BLOCK ASSY	Fig.1-3-6	2(\$⑦),2(L⑦)	NOTETa NOTETb NOTETc
8	STROBE ASSY	Fig.1-3-7	(S®),GR-DVX77EG/EK,DVX88EG	NOTE®
9	E.VF ASSY	Fig.1-3-8	☆CN ⑨a, (⑨b) (S⑨), 2(L⑨)	NOTE@a NOTE@b NOTE@c NOTE@d
10	AUDIO BOARD ASSY	Fig.1-3-9	SPACER,(S@a),3(S@b),(L@a) (L@b),BRACKET(TOP)	NOTE®a NOTE®b
(1)	MDA BOARD ASSY	Fig.1-3-10	☆CN ⊕a, ⊕b, ⊕c, (S⊕) ☆CN ⊕d, ⊕e	NOTE®a NOTE®b NOTE®c
12	MAIN BOARD ASSY		(S@a), (L@), SHIELD PLATE ☆CN @a, @b, (S@b)	NOTE®
13	MECHANISM ASSY		(S3a), 2(S3b), 2(L3) BRACKET(MECHA)	_

Table 1-3-2

Note: Remove the parts marked in .

CONN. No.		CONNECTOR				
①a	DECK OPE	ASSY -	\Leftrightarrow	AUDIO	CN803	6
②a	AUDIO	CN804	\leftrightarrow	MIC UNIT	-	4
3 a	JACK	CN901	\Leftrightarrow	MAIN	CN103	18
4 a	MDA	CN207	\Leftrightarrow	SUB OPE ASSY	-	7
4 b	MAIN	CN104	\leftrightarrow	W/B	-	3
4 C	MAIN	CN106	\Leftrightarrow	MONITOR	CN761	45/39
4 d	MAIN	CN112	\Leftrightarrow	J.BOX/MENU	-	16
6 a	MAIN	CN101	⇔	AUDIO	CN801	80
6 b	MAIN	CN107	\Leftrightarrow	CCD	-	20
© C	MAIN	CN109	\Leftrightarrow	STR0BE	-	12
6 d	MDA	CN205	\Leftrightarrow	OP BLOCK ASSY	-	24
6 e	MAIN	CN208	\Leftrightarrow	JUNCTION	CN601	20
9 a	AUDI0	CN805	\Leftrightarrow	E. VF ASSY	CN1	16
9 b	AUDI0	CN803	\Leftrightarrow	FPC	-	6
(1)a	MDA	CN202	\Leftrightarrow	DRUM MOTOR	-	11
11 b	MDA	CN201	\Leftrightarrow	LOADING MOTOR	-	6
11 C	MDA	CN203	\Leftrightarrow	CAPSTAN MOTOR	-	18
11 d	MAIN	CN102	+	MDA	CN206	80
11 e	MDA	CN204	\Leftrightarrow	SENSOR	-	15
12a	MAIN	CN110	\Leftrightarrow	HEAD		8
12 b	MAIN	CN111	\Leftrightarrow	ROTARY ENCODER	-	6

NOTE ②: Beware of electrical shock due to the capacitor during work. (GR-DVX77EG/EK and GR-DVX88EG)

NOTE ③a: When disassembling the Front Cover Assembly, remove the screws, pull out the studs and free the grip belt.

NOTE ③b: When attaching the assembly, make sure that the strobe block fits properly into the frame.

(GR-DVX77EG/EK and GR-DVX88EG)

NOTE (a): Remove the Upper Case Assembly before removing the Monitor Assembly (§).

NOTE 4b: Take care not to damage the parts (battery terminals).

NOTE 4c: *Take care not to damage the parts (spring).*

NOTE 5: Refer to Fig. 1-4-1 for the disassembly method.

NOTE (a: Remove the board assemblies (Main/MDA) and Mechanism Assembly together.

NOTE (6)**b:** When removing, take care not to disconnect the wire or damage any of the parts.

NOTE 6c: When attaching, be careful of the board attaching position.

NOTE (a): Remove the OP Block Assembly together with the Strobe Assembly. Beware of electrical shock due to the capacitor during work.

(GR-DVX77EG/EK and GR-DVX88EG)

NOTE (7)b: When removing, take care not to disconnect the wire or damage any of the parts.

NOTE ①c: Refer to Fig. 1-5-1 for the disassembly method.

NOTE **®**: Beware of electrical shock due to the capacitor during work. (GR-DVX77EG/EK and GR-DVX88EG)

NOTE (a)a: When removing, be careful with the FPC (for the Deck Operation Assembly) attached inside the E.VF Assembly.

Remove the FPC by unplugging it from the connector and then taking the FPC out together with the E. VF or by peeling it carefully so that the double-sided adhesive can be reused later.

NOTE (9)b: When removing or attaching, take care not to damage any parts.

Particularly, when attaching the switch, always pull out the E.VF Assembly to avoid it from damaging the switch.

NOTE 9c: When attaching, be careful with the wire treatment.

NOTE 9d: Refer to Fig. 1-6-1 for the disassembly method.

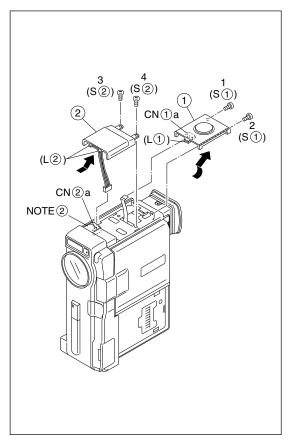
NOTE (iii)a: When attaching or removing, take care not to damage any parts.

Attach the slide switch at the position of the DSC switch (VIDEO side).

(GR-DVX77EG/EK and GR-DVX88EG)

NOTE (1)b: When attaching, take care with the wire treatment.

This note does not apply when the E.VF Assembly and FPC have been removed together as shown in Fig. 1-3-8.


NOTE ①a: When unplugging the connector ①d, be careful with the handling of the FPC connected to it.

NOTE (1)b: Connector (1)e is located inside the circuit board, so it should be the last item to be removed.

NOTE (1)c, (2): When attaching, pay heed to the FPC treatment.

Mount the FPC so that it is caught between the Mechanism Assembly and the Main Board Assembly.

Table 1-3-3

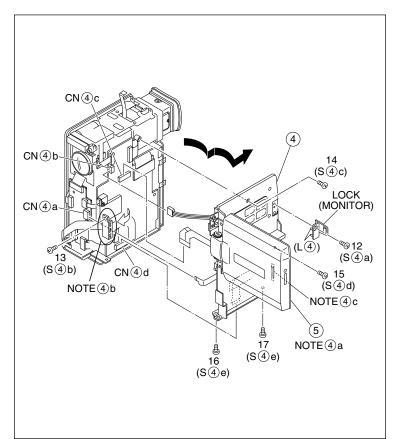


Fig. 1-3-1 Fig. 1-3-3

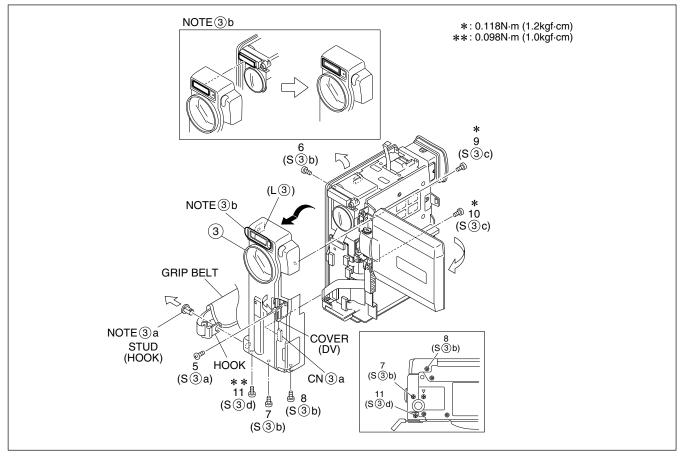


Fig. 1-3-2

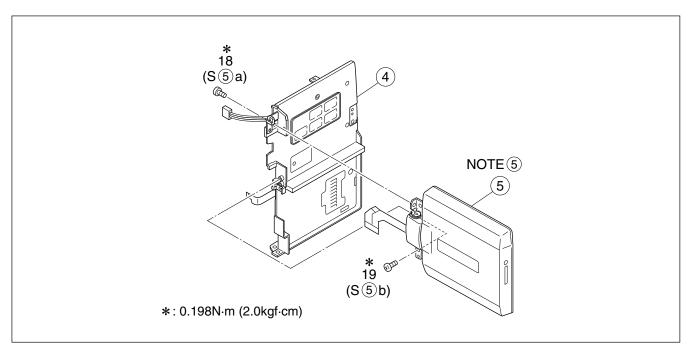


Fig. 1-3-4

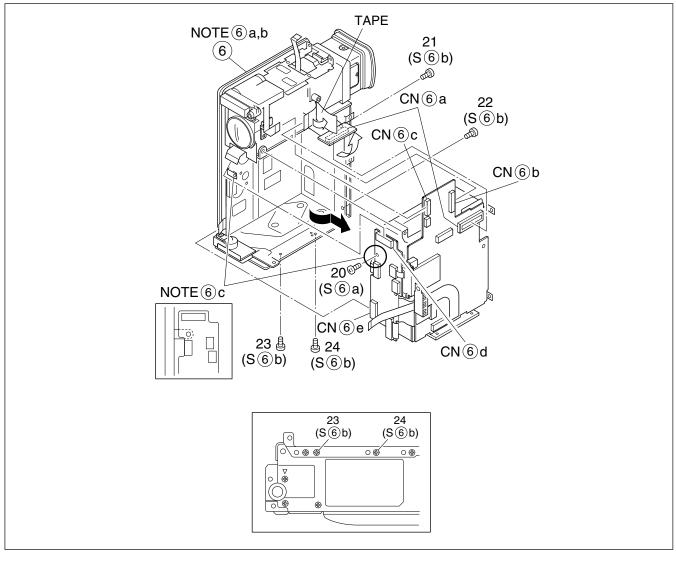
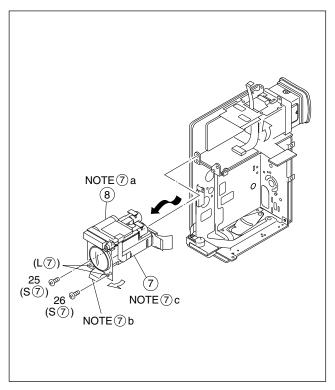



Fig. 1-3-5

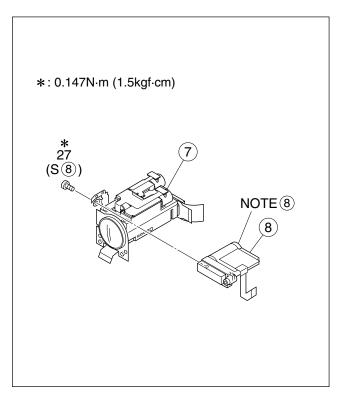


Fig. 1-3-6 Fig. 1-3-7

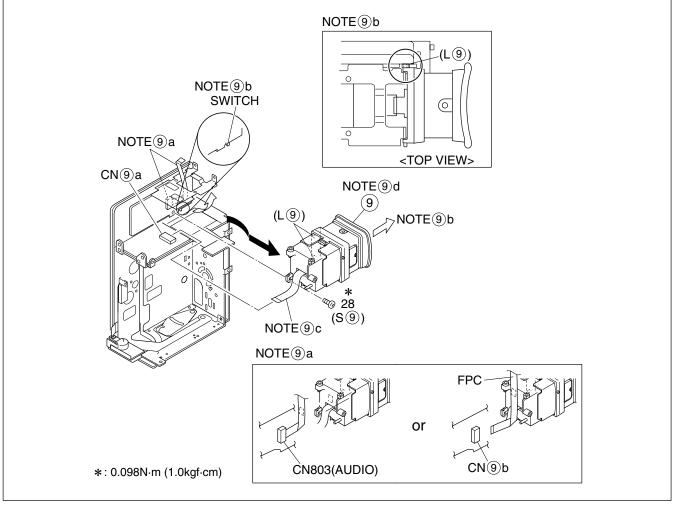


Fig. 1-3-8

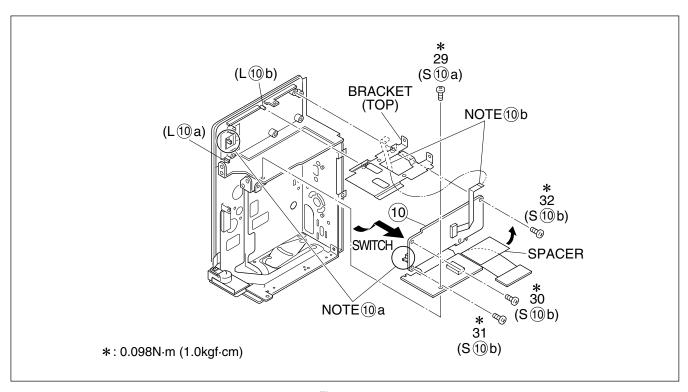


Fig. 1-3-9

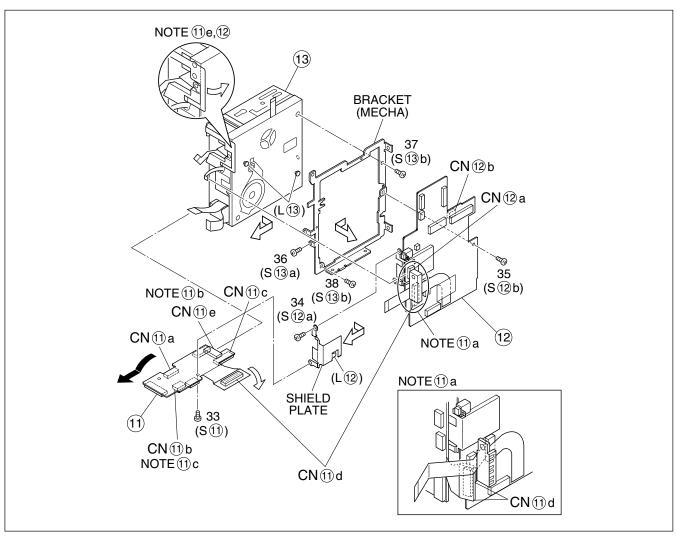


Fig. 1-3-10

1.4 DISASSEMBLY OF 5 MONITOR ASSEMBLY

1.4.1 5 Monitor assembly/Hinge assembly

- Remove the four screws (1-4). While opening the monitor cover assembly as shown by the arrow, release the two hooks (L⑤a, L⑥b) from engagement and remove the monitor cover assembly.
- Remove the parts out of the monitor case and unlock the connector CN(s)a. While raising the hinge assembly upwards, get the two hooks (L(s)c, L(s)d) disengaged and disconnect the FPC by pulling it out. Then, remove the hinge assembly.

Note(§)a: When removing the parts out of the monitor case assembly, be very careful not to damage the FPC and parts.

3. Disconnect FPC from the connector CN®b and then remove the MONITOR board assembly and backlight.

Note 5b: Remove the MONITOR board assembly and backlight together unless it is needed to separate them from each other for part replacement, etc., because the two are soldered to each other.

4. Remove the LCD module.

1.4.2 Hinge assembly

 Remove the two screws (5, 6). While releasing the two hooks (L\$f, L\$g) from engagement, remove the hinge cover (U).

Note(s)c: Be careful not to lose any part during the abovementioned process.

Draw the FPC assembly out of the hinge cover (L) and then remove the FPC assembly from the hinge assembly.

Note sd: When reassembling, wind the FPC assembly around the hinge assembly by three turns and a half

Be careful not to break the FPC wire during the work.

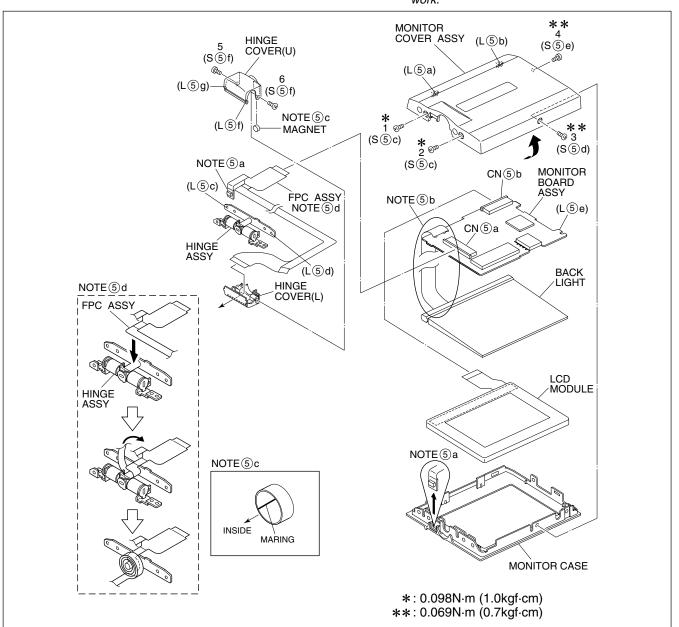


Fig. 1-4-1

1.5 DISASSEMBLY OF ② OP BLOCK ASSEMBLY/CCD BOARD ASSEMBLY

1.5.1 Precautions

- Carefully handle the CCD image sensor, optical LPF, lens, etc. during the disassembly work. Pay the most careful attention to the surface of those parts not to get it soiled, scratched or dusty. If some of those surfaces gets soiled with fingerprints, etc., wipe it out with silicone paper, clean chamois, cleaning cloth or the like.
- The new CCD image sensor is occasionally shipped from the factory as a protection seal is applied onto its transparent glass. If so, leave the protection seal as it is and remove it just before installing the CCD image sensor in the OP block assembly.

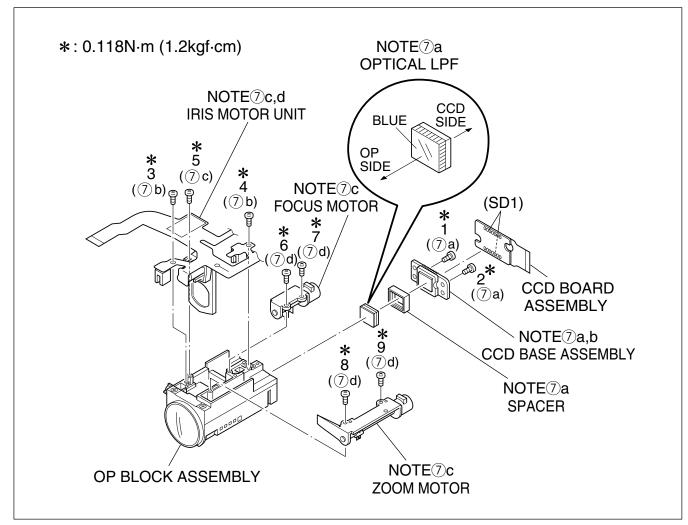
1.5.2 How to remove OP block assembly and CCD board assembly

- Unsolder at the fourteen points (SD1) and remove the CCD board assembly.
- 2. Remove the two screws (1, 2) and then remove the CCD base assembly.
- **Note**(7)a: Carefully remove the CCD base assembly, because the space rubber and optical LPF may be removed together with the CCD image sensor.
- **Note (7)b:** When replacing the CCD image sensor, don't replace it individually but replace the CCD base assembly in whole with a new one.

1.5.3 How to install OP block assembly and CCD board assembly

- 1. Install the optical LPF with the space rubber fitted to its CCD side in the OP block assembly.
- 2. Paying heed to the space rubber not to get it to come off the setting position, install the CCD base assembly in place and fasten it together with the space rubber with the two screws (1, 2).
- Set the CCD board assembly in the CCD base assembly, and fasten it by soldering at the fourteen points (SD1).

1.5.4 Replacement of service parts


Service parts to be supplied for the OP block assembly are as follows.

When replacing a part, be very careful not to get the FPC wire broken or damaged by soldering (overheating).

- 1. Focus motor
- 2. Zoom motor
- 3. Iris motor unit

Note Tc: When soldering the FPC wire of the focus motor or zoom motor during the replacement work, be sure to keep the tip of a soldering iron approximately 1 mm above the terminal.

Note d: The iris motor unit includes one FPC assembly and two sensors.

1.6 DISASSEMBLY OF 9 E. VF ASSEMBLY

1.6.1 9E. VF assembly

Note(9)**a:** When disassembling the E VF assembly, remove the frame (VF) from the case/cap assembly depending on the situation.

Note 9b: Be very careful not to get the inside of the VF soiled or dusty during and after disassembling the E. VF assembly.

Note 9c: After the screw having the loose-proof tip was once removed from the E. VF assembly, don't reuse it.

- 1. Remove the eyecup and pull out the guide (VF).
- 2. Draw the frame (VF) out of the case assembly.

<Case assembly>

- 3. Remove the screw (1) first and then lever (VF).
- 4. Remove the three screws (2-4) and draw out the eyepiece sub assembly.

<Frame (VF)>

Remove the screw (5) first and then LCD module/holder (LCD).

Note 9d: Pay heed to the FFC not to damage it during the removing work.

Get the two hooks (L@a, L@b) disengaged and then remove the holder (LCD)

Note 9e: Carefully proceed with the above-mentioned work not to damage any part.

Disconnect the connector (CN®a) and remove the LCD module.

Note 9f: Pay heed the parts not to damage any thing.

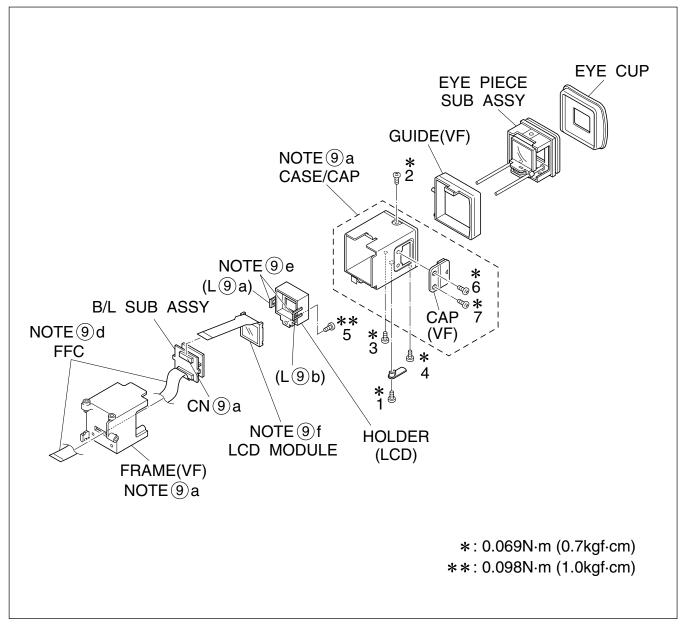
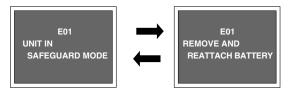


Fig. 1-6-1


1.7 EMERGENCY DISPLAY

Whenever some abnormal signal is input to the syscon CPU, an error number (E01, as an example) is displayed on the LCD monitor or (in the electronic view finder).

In every error status, such the message as shown below alternately appear over and over.

 In an emergency mode, all operations except turning on/ off the POWER switch are ineffectual.

Example (in case of the error number E01):

LCD display	Emergency mode	Details		Possible cause
E01	LOADING	In the case the encoder position is not shifted to the next point though the loading motor has rotated in the loading direction for 4 seconds or more. This error is defined as [E01].	2.	The mechanism is locked during mode shift. The mechanism is locked at the mechanism loading end, because the encoder position is skipped during mechanism mode shift. No power is supplied to the loading MDA.
E02	UNLOADING	In the case the encoder position is not shifted to the next point though the loading motor has rotated in the unloading direction for 4 seconds or more. This error is defined as [E02].	1. 2.	The mechanism is locked during mode shift. The mechanism is locked at the mechanism loading end, because the encoder position is skipped during mechanism mode shift.
E03	TU & SUP REEL FG	In the case no REEL FG is produced for 4 seconds or more in the capstan rotation mode after loading was complete, the mechanism mode is shifted to STOP with the pinch roller set off. This error is defined as [E03]. However, no REEL EMG is detected in the SLOW/STILL mode.	1. 2. 3. 4. 5.	The idler gear does not engage with the reel disk well. Though the idler gear and reel disk are engaged with each other, the tape is not wound because of overload to the mechanism. No FG pulse is output from the reel sensor. No power is supplied to the reel sensor. Tape transport operation takes place with a cassette having no tape inside. The tape slackens and no pulse is produced until the slack is taken up and the tape comes into the normal status.
E04	DRUM FG	In the case there is no DRUM FG input in the drum rotation mode for 4 seconds or more. This error is defined as [E04], and the mechanism mode is shifted to STOP with the pinch roller set off.		The drum cannot be started or drum rotation is stopped because tape transport load is too high. 1) Tape tension is extremely high. 2) The tape is damaged or soiled with grease, etc. The DRUM FG signal is not received by the syscon CPU. 1) Disconnection in the middle of the signal line. 2) Failure of the DRUM FG pulse generator (hall element). No drum control voltage is supplied to the MDA. No power is supplied to the DRUM MDA.
E05	_	-		-
E06	CAPSTAN FG	In the case no CAPSTAN FG is produced in the capstan rotation mode for 2 seconds or more. This error is defined as [E06], and the mechanism mode is shifted to STOP with the pinch roller set off. However, no CAPSTAN EMG is detected in the STILL/FF/REW mode.	1. 2. 3. 4.	The CAPSTAN FG signal is not received by the syscon CPU. 1) Disconnection in the middle of the signal line. 2) Failure of the CAPSTAN FG pulse generator (MR element). No capstan control voltage is supplied to the MDA. No power is supplied to the CAPSTAN MDA. The capstan cannot be started or capstan rotation is stopped because tape transport load is too high. 1) Tape tension is extremely high. (Mechanical locking) 2) The tape is damaged or soiled with grease, etc. (Tape tangling occurs, etc.)

(DVC_03)

1.8 SERVICE NOTE

Symbol No. 1	J)))			9
1 2	3 4	2	6 7	8	9 10	11	12	13	. 41	15 16	17	18
		*					*					*
Fig.	Fig. 1-3-1			Fig. 1-3-2	CI.				Fig. 1-3-3	-3-3		Fig. 1-3-4
	I		I		П	Ħ			I			IV
	9		(g) / (g)	8	6		@			(12)		<u>(T)</u>
20 21	22 23 2	24 2	25 26	27	28	29	30 31	32	33	34 3	35 36	37
ij	Fig. 1-3-5		Fig. 1-3-6	Fig. 1-3-7	7 Fig. 1-3-8	_	Fig. 1-3-9				Fig. 1-3-10	10
	I		ı	Λ	Ħ		Ħ				Н	
			Γ									
⊠ જે	5 MONITOR ASSY											
1 2	4 4	5 6										
*												
	Fig. 1-4-1		<u> </u>									
Ш	IV											
	(7) OP BLOCK	CK ASSY	SY							(9) E. VF	E. VF ASSY	
1 2	4	5 6	7	6 8	Removing order of screw $ ightarrow$	order of	screw →	_	2	8	2	6 7
					Place	Place to stick screw	screw →					
	Fig.	Fig. 1-5-1			Refe	erence dr	Reference drawing →			Fig. 1-6-1	Ţ	
		п			Screw tig	htening	Screw tightening torque →		M	ı		VI

Table 1-8-1

III : 0.098N·m (1.0kgf·cm) VI : 0.069N·m (0.7kgf·cm)

II : 0.118N·m (1.2kgf·cm)V : 0.147N·m (1.5kgf·cm)

 $\boldsymbol{\ast}$: Don't reuse the screw, because screw lock bond was applied to them.

< NOTE >

1 1

Pay careful attention to tightening torque for each screw.

: 0.078N·m (0.8kgf·cm) : 0.198N·m (2.0kgf·cm)

I ≥

SECTION 2 MECHANISM ADJUSTMENT

2.1 PRELIMINARY REMARKS ON ADJUSTMENT AND REPAIR

2.1.1 Precautions

- 1. When fastening parts, pay careful attention to the tightening torque of each screw. Unless otherwise specified, tighten a screw with the torque of 0.039 N·m (0.4 kgf·cm).
- 2. Be sure to disconnect the set from the power supply before fastening and soldering parts.
- 3. When disconnecting/connecting wires, be careful not to get them and their connectors damaged. (Refer to the Section 1.)
- 4. When replacing parts, be very careful neither to damage other parts nor to fit wrong parts by mistake.

2.1.2 Notes on procedure for disassemby/assembly

The disassembling procedure table (Table 2-4-1 on page 2-6,a part of the table is shown below for reference)shows the procedure to disassemble/reassemble mechanism

Carefully read the following explanation before starting actual disassembling/reassembling work. The item numbers (circled numbers)in the following explanation correspond to those appearing under respective columns of the table.

- (1) Circled numbers appearing in this column indicate the order to remove parts. When reassembling, follow these numbers in the reverse order. Circled numbers in this column correspond to those appearing in drawings of this section.
- (2) This column shows part names corresponding to circled numbers in the left column.

- (3) The symbol (T or B)appearing in this column shows the side which the objective part is mounted on. T = the upper side, B = the lower side
- (4) Symbols appearing in this column indicate drawing numbers.
 - Step Part Name Fig. Point Note Remarks
- (5) This column indicates parts and points such as screws, washers, springs, and others to be removed/fitted for disassembling/reassembling the mechanism. Besides such the parts, this column occasionally indicates working points.

Ρ = Sprina W Washer

S Screw

Lock (L), soldering (SD), shield, connector (CN),

Example

- Remove ((W1)=Washer W1.
- **Remove the solder at (SD1)=Point SD1.
- **Disconnect (A) = Connector (A) .
- (6) Numbers in this column represent the numbers of notes in the text. For example, "1" means "Note 1". (For parts that need phase adjustment after reassembling, refer to "2.6 MECHANISM ADJUSTMENTS".)
- (7) This column indicates required after-disassembling/-reassembling work such as phase adjustment or mechanism adjustment.

NO.	PART NAME		FIG.	POINT	NOTE	REMARKS
A Cas	sette housing assembly	Т	Fig. 2-4-5	3(S1),(L1a)-(L1d)	1a, 1b, 1c, 1d	Adjustment
2a	Reel disk (SUP) assembly	Т	Fig. 2-4-6	(W2)	2a, 2b	
2b	Reel disk (TU) assembly	Т		(W2)	2a, 2b	
2c	Reel cover assembly	Т		2(S2a),(S2b),(W2)	2d	
3a	Tension arm assembly	Т	Fig. 2-4-7	(W3a)	3b	
3b	Release guide assembly	Т		-	3a	
3c	Idler arm assembly	Т		(W3b)	-	
3d	Guide arm assembly	Т		-	3a	
<u>3e</u>	Pinch roller arm assembly	Т		(W3a)	-	
(4a)	Cleaner arm assembly	Т	Fig. 2-4-8	(L4a)	4a	
4b	Slant pole arm assembly	Т		(W4),(L4b),(P4a),(P4b)	4b	
4c	Drum assembly	Т		3(S4)	-	
5a	Guide roller (S) assembly	Т	Fig. 2-4-9	(P5)	5a, 5b	
(5b)	Rail assembly	Т		3(W5a), (W5b)	5c	
(1)	(2)	(3)	(4)	(5)	(6)	(7)

2.2 JIGS AND TOOLS REQUIRED FOR DISASSEMBLY, ASSEMBLY AND ADJUSTMENT

2.2.1 Tools required for adjustments

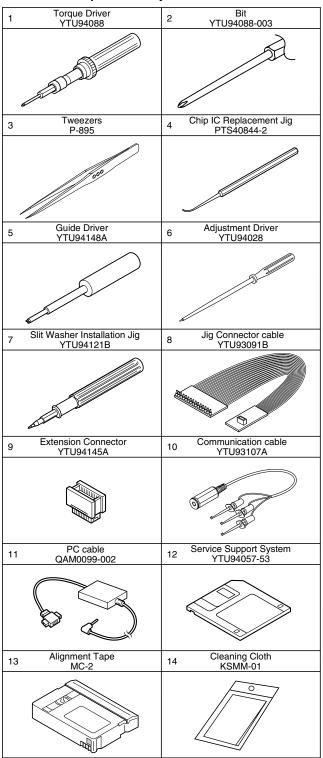


Table 2-2-1

1. Torque Driver

Be sure to use to fastening the mechanism and exterior parts because those parts must strictly be controlled for tightening torque.

Bit

This bit is slightly longer than those set in conventional torque drivers.

3. Tweezers

To be used for removing and installing parts and wires.

4. Chip IC replacement Jig

To be used for adjustment of the camera system.

5. Guide Driver

To be used to turn the guide roller to adjustment of the linarity of playback envelope.

6. Adjustment Driver

To be used for adjustment.

7. Slit Washer Installation Jig

To be used to install slit washers.

8. Jig Connector cable

Connected to CN105 of the main board and used for electrical adjustment, etc.

9. Extension Connector

Connect this extension connector to the connector of the Jig connector cable for extending the cable connector.

Note: For supplying the power through the coupler by removing the cover (for Jig), use this extension connector double for connecting the Jig connector cable.

10. Communication cable

Connect the Communication cable between the PC cable and Jig connector cable when performing a PC adjustment.

11. PC cable

To be used to connect the VideoMovie and a personal computer with each other when a personal computer is used for adjustment.

12. Service Support System

To be used for adjustment with a personal computer.

13. Alignment Tape

To be used for check and adjustment of interchangeability of the mechanism.

14. Cleaning Cloth

Recommended cleaning cloth to wipe down the video heads, mechanism (tape transport system), optical lens surface.

2.3 DISASSEMBLY/ASSEMBLY OF MECHANISM ASSEMBLY

2.3.1 General statement

The mechanism should generally be disassembled/assembled in the EJECT mode (ASSEMBLY mode). (Refer to Fig. 2-3-1.)

However, when the mechanism is removed from the main body, it is set in the STOP mode. Therefore, after the mechanism is removed from the main body, supply 3 V DC to the electrode on the top of the loading motor to enter the mechanism mode into the EJECT mode compulsory.

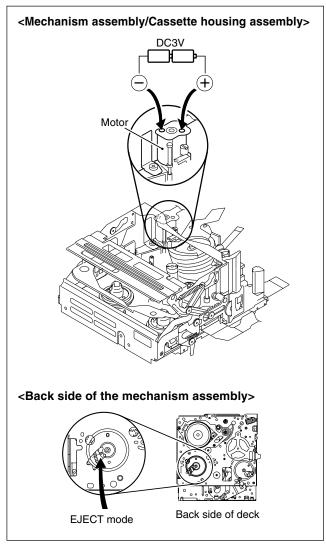


Fig. 2-3-1

2.3.2 Explanation of mechanism mode

The mechanism mode of this model is classified into six modes as shown in Table 2-3-1. Each mechanism mode can be distinguished from others by the relative position of "O" mark on the sub cam gear to the inner or outer protrusion on the main deck.

Refer to Fig. 2-3-2 to 2-3-8 below.

The EJECT mode, C IN mode and SHORT FF mode should be recognized by the relative position of the "O" mark to the inner protrusion, while the STOP mode, REV mode and PLAY mode should be recognized by that to the outer protrusion.

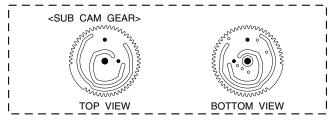


Fig. 2-3-2

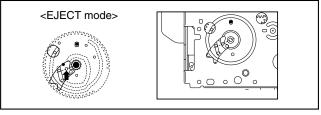


Fig. 2-3-3

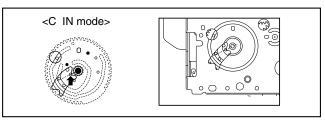


Fig. 2-3-4

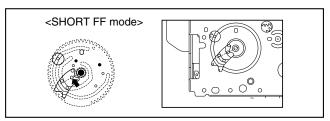


Fig. 2-3-5

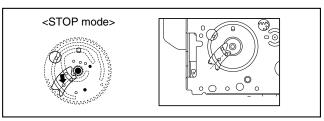


Fig. 2-3-6

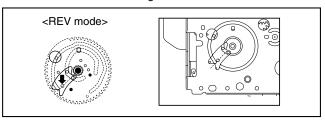


Fig. 2-3-7

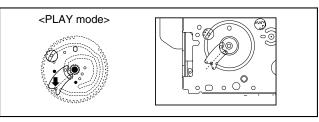


Fig. 2-3-8

2.3.3 Mechanism timing chart

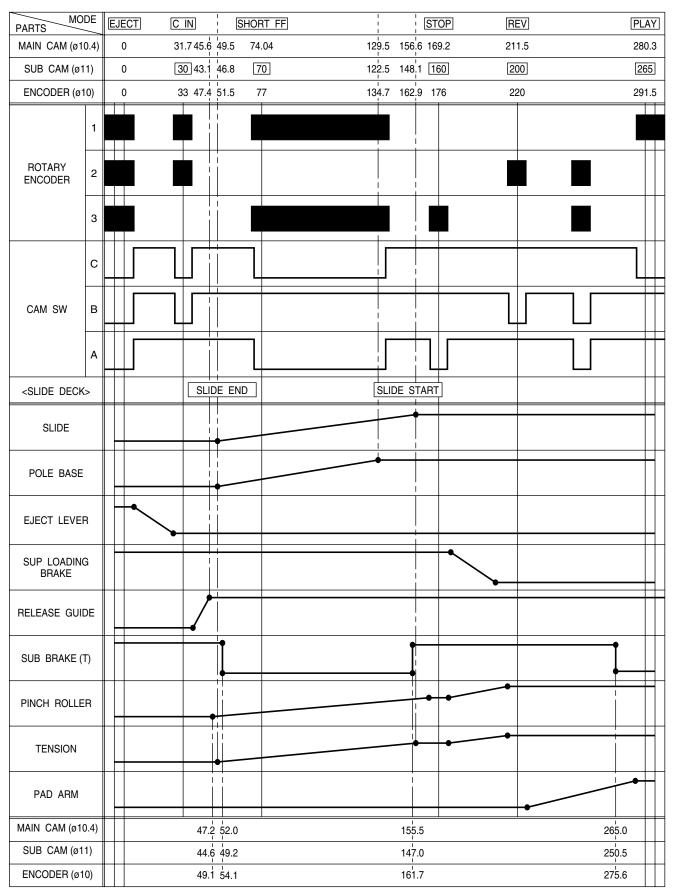


Table 2-3-1

2.4 DISASSEMBLY/ASSEMBLY OF MECHANISM ASSEMBLY

2.4.1 Follow chart

1. Configuration

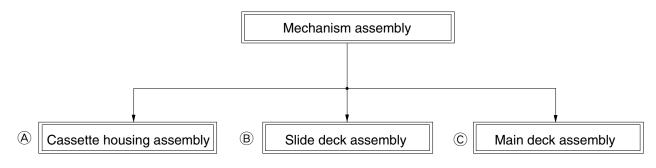


Fig. 2-4-1

2. Procedures for disassembly

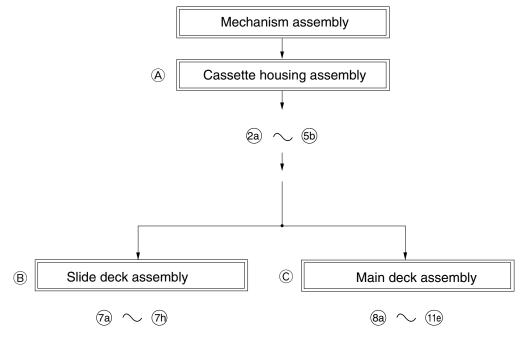


Fig. 2-4-2

3. Disassembling procedure table

NO.	PART NAME		FIG.	POINT	NOTE	REMARKS
(A) Cass	ette housing assembly	Т	Fig. 2-4-5	3(S1),(L1a)-(L1d)	1a, 1b, 1c, 1d	Adjustment
2a	Reel disk (SUP) assembly	Т	Fig. 2-4-6	(W2)	2a, 2b	
2 b	Reel disk (TU) assembly	Т		(W2)	2a, 2b	
2c	Reel cover assembly	Т		2(S2a),(S2b),(W2)	2d	
<u>3a</u>	Tension arm assembly	Т	Fig. 2-4-7	(W3a)	3b	
3 b	Release guide assembly	Т		•	3a	
3c	Idler arm assembly	Т		(W3b)	-	
3 d	Guide arm assembly	Т		-	3a	
3e	Pinch roller arm assembly	Т		(W3a)	-	
(4a)	Cleaner arm assembly	Т	Fig. 2-4-8	(L4a)	4a	
4b	Slant pole arm assembly	Т		(W4),(L4b),(P4a),(P4b)	4b	
(4c)	Drum assembly	Т		3(S4)	-	
5a	Guide roller (S) assembly	Т	Fig. 2-4-9	(P5)	5a, 5b	
5b	Rail assembly	Т		3(W5a), (W5b)	5c	
B Slide	deck assembly / © Main deck assembly	Т	Fig. 2-4-10	(W6),(L6a)-(L6d)	6a, 6b	(Adjustment)
B	Slide deck assembly					
(7a)	Loading brake assembly	Т	Fig. 2-4-11	(W7),(L7a),(P7a)	7e	
7b	Guide pin (S)	Т		(S7a)	-	
7c	Pad arm assembly	Т		(W7),(L7b),(P7b)	7d	Adjustment
7d	Slide guide plate assembly	Т		(S7b)	7c	Adjustment
7e	Collar	Т		-	7a	
7f	Collar	Т		-	7a	
7g	Sub brake assembly	Т		(W7),(L7c),(P7c)	7b	
7h	Control plate assembly	Т		2(W7),(L7d),(P7d)	7b	
© Main	deck assembly					
8a	Tension lever assembly	Т	Fig. 2-4-12	-	8c	
8b)	Slide lever assembly	Т		-	8b	
8c	Brake control lever assembly	Т		-	8a	
9a	Loading guide	Т	Fig. 2-4-13	(S9)	-	
9b	Timing belt	Т		-	9b	
9c	Center gear assembly	Т		-	-	
9d	Motor bracket assembly	Т		2(S9)	9a	
9e	Worm wheel	Т		(W9)	-	(Phase adjustment)
9f	Gear holder	Т		(S9)	-	
10a	Main cam gear	Т	Fig. 2-4-14	(S10)	10b	Phase adjustment
(10b)	Brake control plate	Т		(L10)	10b	Phase adjustment
(10c)	Rotary encoder	Т		(S10),(W10a)	10a	Phase adjustment
(10d)	Connect gear	Т		(W10a)	-	(Phase adjustment)
10e	Reel drive pulley assembly	Т		(W10b)	-	
11a	Catcher (T) assembly	Т	Fig. 2-4-15	2(S11)	-	
(11b)	Capstan motor	Т		2(S11)	-	
(11c)	Charge arm assembly	Т		(W11)	11	
11d)	Sub cam gear	Т		(S11)	-	Phase adjustment
(11e)	PWB holder	В		2(S11)	-	-

Table 2-4-1

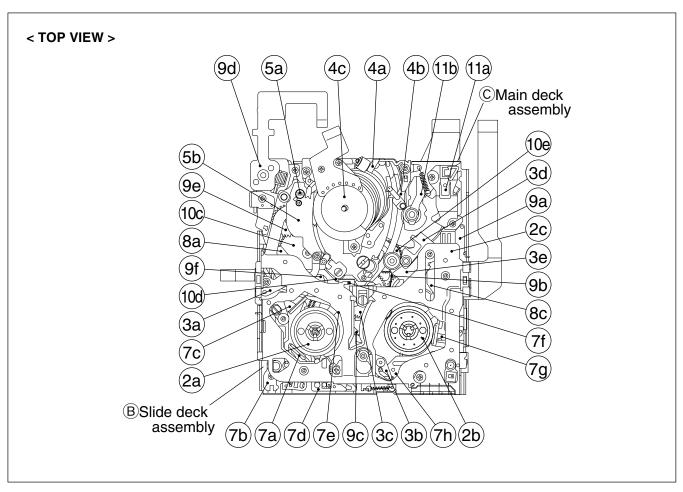


Fig. 2-4-3

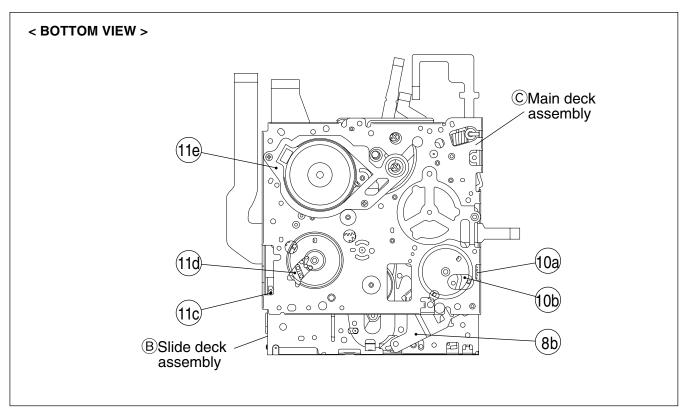


Fig. 2-4-4

2.4.2 Disassembly/assembly

1. (A) Cassette housing assembly

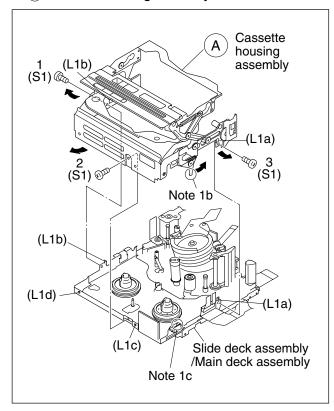


Fig. 2-4-5

2. 2a Reel disk (SUP) assembly

- (2b) Reel disk (TU) assembly
- 2c Reel cover assembly

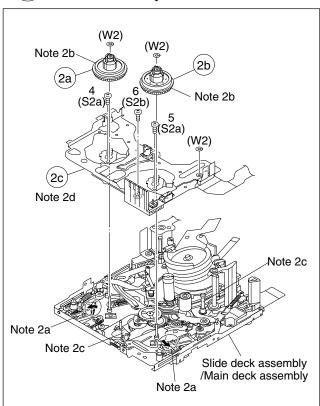
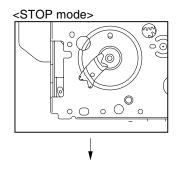
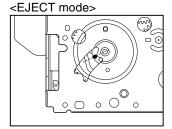
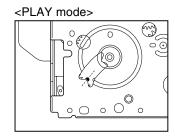





Fig. 2-4-6

Note 1a:

Shift the mechanism mode from the STOP mode to the EJECT mode.

Note 1b:

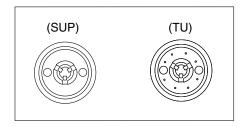
Reassemble the cassette housing assembly to the mechanism as the cancel lever is moved in the direction of the arrow.

Note 1c:

When reassembling the cassette housing to the mechanism, make sure that there is no deformation in the frame or no damage to the switches, etc.

Note 1d:

After reassembling the component parts, check the mechanism operation in the PLAY mode.


For details of checking method, refer to "2.6.1 assembling slide deck assembly and main deck assembly".

Note 2a:

When removing the reel disk assembly, be careful not to break the brake pad which applies lateral pressure to the reel disk.

Note 2b:

Be careful not to make a mistake in installing the reel disk. The SUP reel disk and TU reel disk can be distinguished from each other by the appearance as shown below.

Note 2c:

When reassembling the cassette housing to the mechanism, make sure that there is no deformation in the frame or no damage to the switches, etc.

Note 2d

When fitting the reel cover assembly to the set, carefully tighten the screw with the specified tightening torque of 0.069N•m (0.7kaf•cm).

- 3. (3a) Tension arm assembly/ (3b) Release guide assembly
 - (3c) Idler arm assembly/(3d) Guide arm assembly
 - (3e) Pinch roller arm assembly

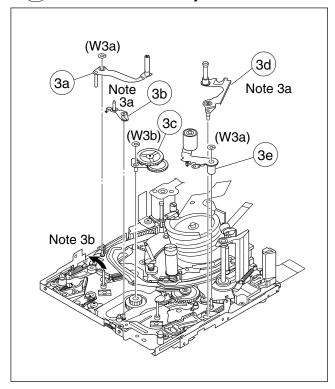
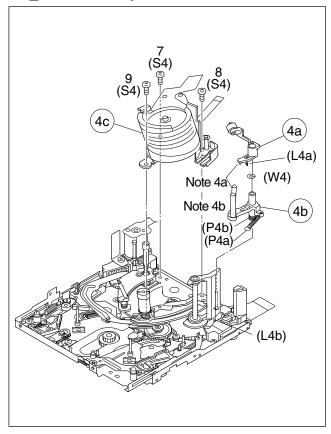
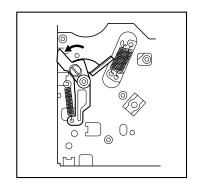


Fig. 2-4-7

4. (4a) Cleaner arm assembly/ (4b) Slant pole arm assembly

(4c) Drum assembly



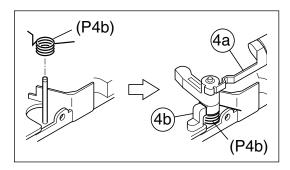

Fig. 2-4-8

Note 3a:

When removing the reel cover assembly, pay heed to release guide assembly and guide arm assembly. For, the guide arm assembly is just inserted into the slide deck assembly from the upside and it is apt to come off after the reel cover assembly is removed.

Note 3b:

Reassemble the tension arm assembly to the mechanism as the pad arm assembly is moved to the extent in the direction of the arrow.



Note 4a:

When removing the cleaner arm assembly, it is recommended to remove the slant pole arm assembly together with it except the case of a single unit replacement, because the hook (L4a) is hard to disengage.

Note 4b:

How to set the coil spring (P4b).

5. (5a) Guide roller (S) assembly/ 5b Rail assembly

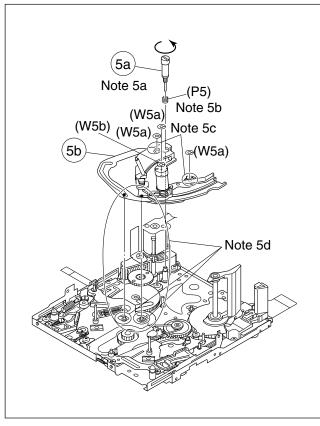


Fig. 2-4-9

6. (B) Slide deck assembly/ (C) Main deck assembly

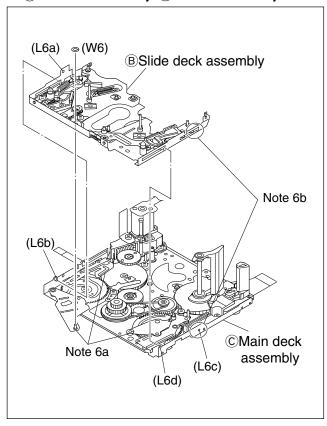
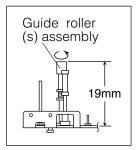



Fig. 2-4-10

Note 5a:

When reassembling, insert the tip of the guide roller with the coil spring put on it into the hole on the main deck. Tighten the guide roller by about 6 turns so that the height of the guide roller assembly is 19 mm or so as shown in the figure.

Note 5b:

Pay careful attention to the spring not to lose it.

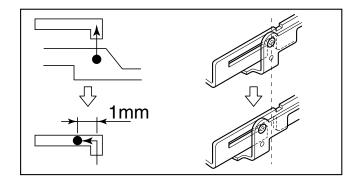
Note 5c:

Pay careful attention to the engagement of the rail assembly's arm ends because they easily come off the engagement. Moreover, make sure that there is neither deformation nor damage observed in them.

Note 5d:

When removing the rail assembly, check to see if the collar is securely set in the arm groove.

Note 6a:


When removing the slide deck assembly, pay heed to the three components of the following because they are apt to come off after the slide deck assembly is removed.

- (8a) Tension lever assembly/ (8b) Slide lever assembly
- (8c) Brake control lever assembly

For reassembling those components, refer to Fig. 2-4-12.

Note 6b

When reassembling the slide deck assembly to the main deck assembly, combine them with each other by the side grooves and then slide the slide deck assembly by 1 mm or so.

- 7. 7a Loading brake assembly/ 7b Guide pin (S)
 - (7c) Pad arm assembly/ (7d) Slide guide plate assembly
 - 7e Collar/7f Collar/7g Sub brake assembly
 - 7h Control plate assembly

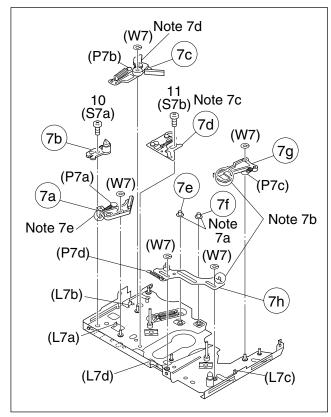
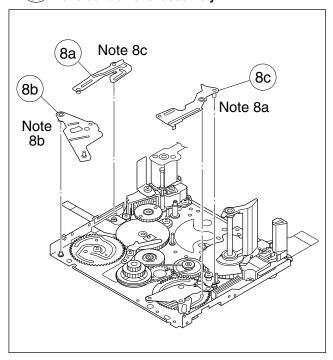
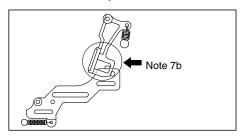


Fig. 2-4-11

8. 8a Tension lever assembly/8b Slide lever assembly

8c Brake control lever assembly




Fig. 2-4-12

Note 7a:

Don't remove these parts unreasonably. If they are removed for some reason, be very careful not to lose them.

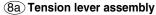
Note 7b:

When reinstalling the sub brake assembly, set the control plate assembly so that its hook is set in the
part of the sub brake assembly.

Note 7c:

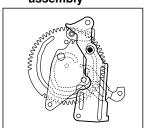
Since the slide guide plate assembly controls the slide deck assembly so that it exactly slides the main deck assembly, it must exactly be assembled in the PLAY mode. Therefore, temporarily fix the slide guide plate assembly in this stage. For details of reassembling procedure, refer to "2.6.1 Assembling slide deck assembly and main deck assembly".

Note 7d:


The pad arm assembly controls the tension level of the tension arm assembly. For adjustment of the tension arm assembly, refer to "2.6.2 Locating tension pole".

Note 7e:

When reinstalling the loading brake assembly, slightly lift the slide deck assembly upwards because the lower part of the loading brake assembly sticks out of the slide deck assembly.


Note 8a, 8b, 8c:

For refitting the respective parts, refer to the following figures

8c Brake control lever assembly

(8b) Slide lever assembly

- 9. 9a Loading guide/ 9b Timing belt
 - 9c) Center gear assembly/ 9d) Motor bracket assembly
 - 9e Worm wheel/9f Gear holder

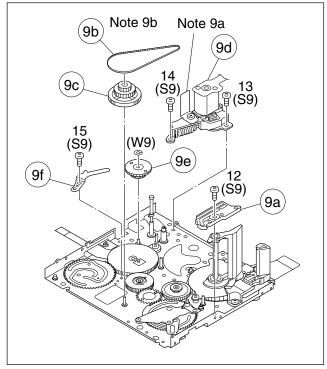


Fig. 2-4-13

- 10. (0a) Main cam gear/ (10b) Brake control plate
 - 10c Rotary encoder/ 10d Connect gear
 - 10e Reel drive pulley assembly

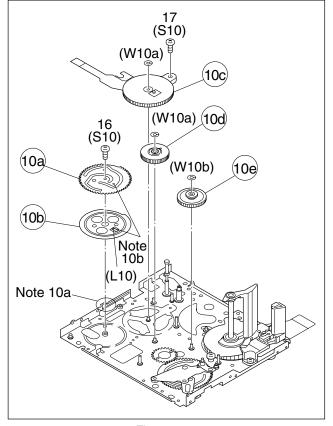
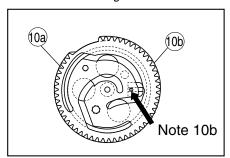


Fig. 2-4-14

Note 9a:

Carefully handle the DEW sensor. (Don't touch the sensor surface in particular.)

Note 9b:


When engaging the timing belt, make sure that it securely engages with the gears of both the center gear assembly and reel drive pulley assembly.

Note 10a:

When removing/refitting parts, pay careful attention to the flexible board and so on not to damage them.

Note 10b:

When reinstalling the main cam gear and the brake control plate, first fit them together so that the protrusion on the brake control plate is set in the slot on the main cam gear as shown below, next install the two together to the main deck assembly.

- 11. (1a) Catcher (T) assembly/ (1b) Capstan motor
 - (1c) Charge arm assembly/ (1d) Sub cam gear
 - 11e PWB holder

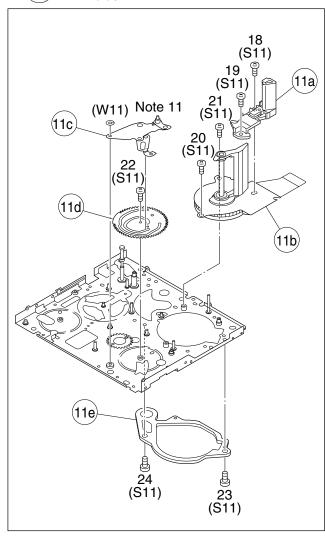
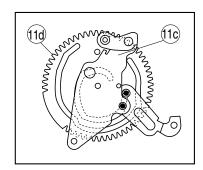



Fig. 2-4-15

Note 11:

The following figure shows how to put the charge arm assembly and sub cam gear assembly together.

2.4.3 List of procedures for disassembly

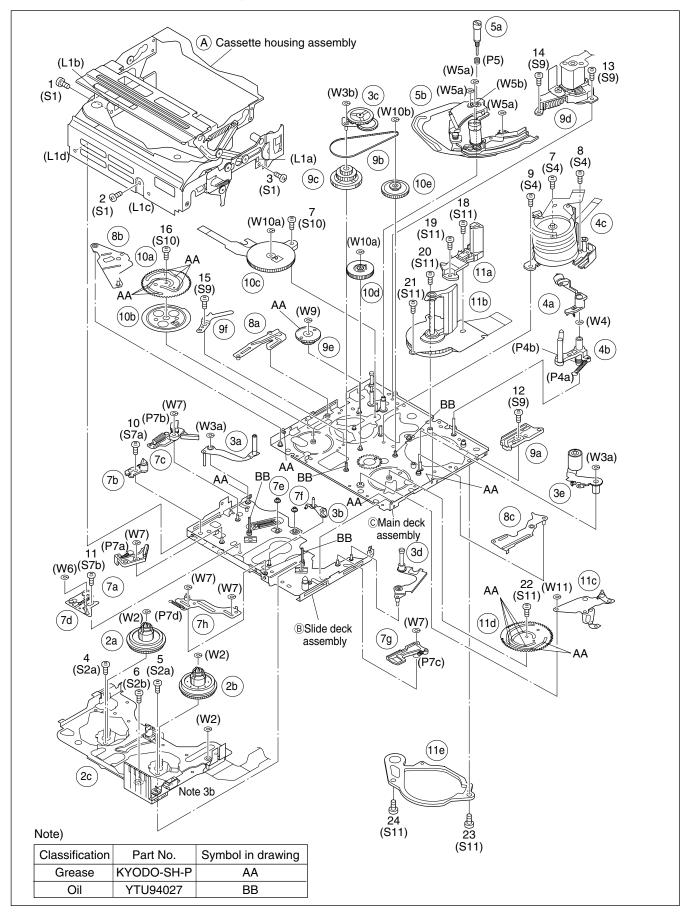


Fig. 2-4-16

2.5 CHECKUP AND ADJUSTMENT OF MECHANISM PHASE

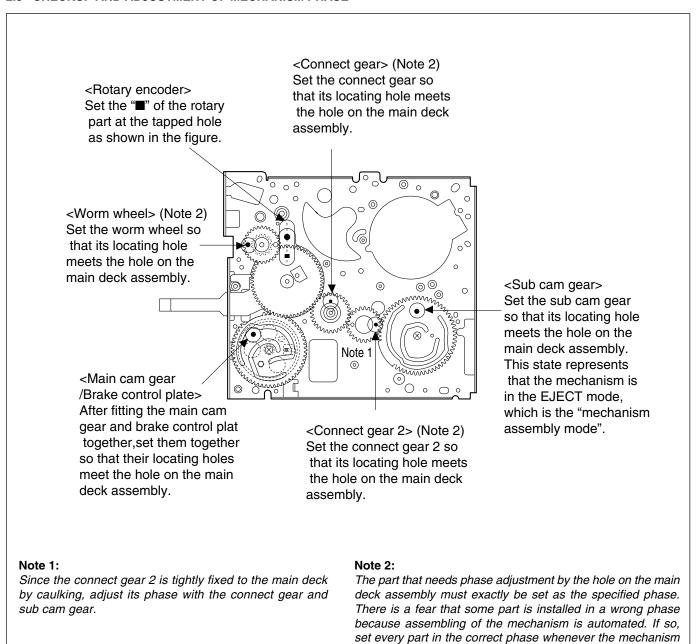


Fig. 2-5-1

is reassembled.

2.6 MECHANISM ADJUSTMENTS

2.6.1 Assembling slide deck assembly and main deck assembly

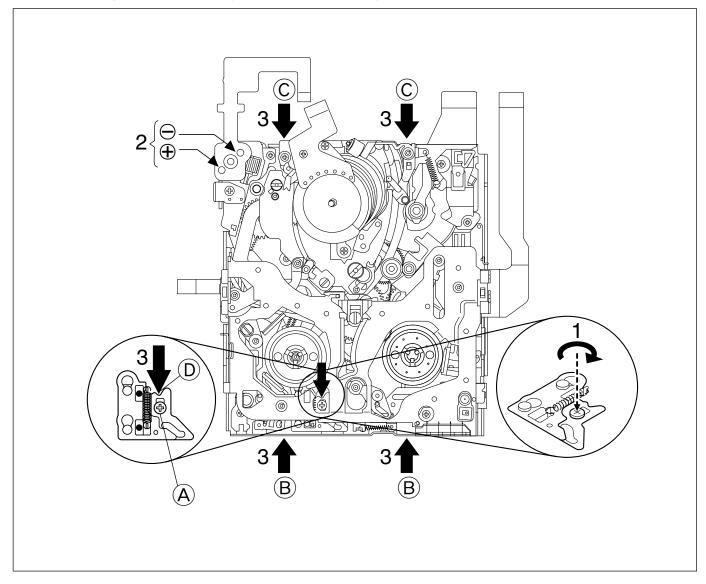


Fig. 2-6-1

Assembling procedure

- 1. Loosen the screw (A).
- 2. Set the mechanism in the PLAY mode. (Refer to "2.3.2 Explanation of mechanism mode".)
- 3. Press the end face ® of the slide deck assembly (reel disk side) and the end face © of the main deck assembly (drum assembly side) with uniform force so that the two assemblies are tightly pressed to each other. Furthermore, press the part © and tighten the screw ④.

Note : Tightening torque for screw (△): 0.069 N·m (0.7 kgf·cm)

2.6.2 Locating tension pole

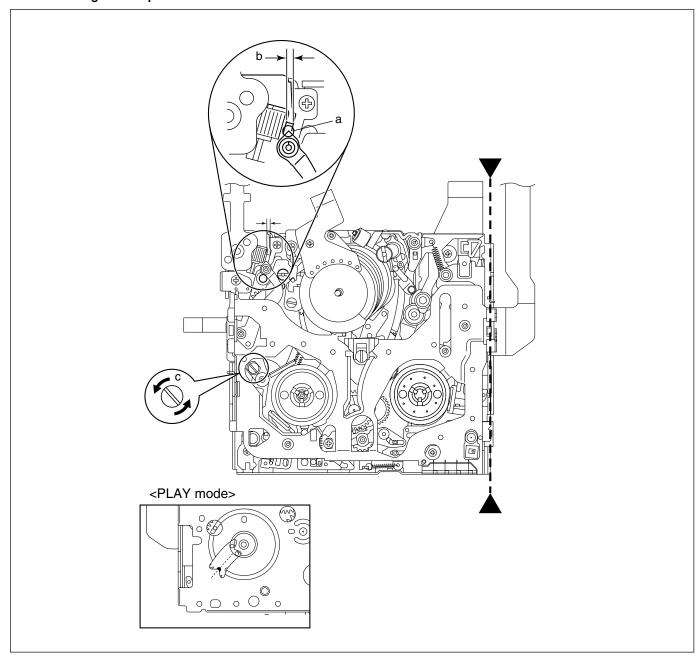


Fig. 2-6-2

Locating procedure

- 1. Enter the mechanism assembly into the PLAY mode. (Refer to "2.3.2 Explanation of mechanism mode".)
- When the "▶----◄" part is positioned down, make sure that the part "a" of the tension arm assembly is located within the range of "b".
- 3. If the part "a" is out of the range, turn the pin "c" to adjust the position.

2.7 SERVICE NOTE

Use the following chart to manage mechanism parts that are removed for disassembling the mechanism.

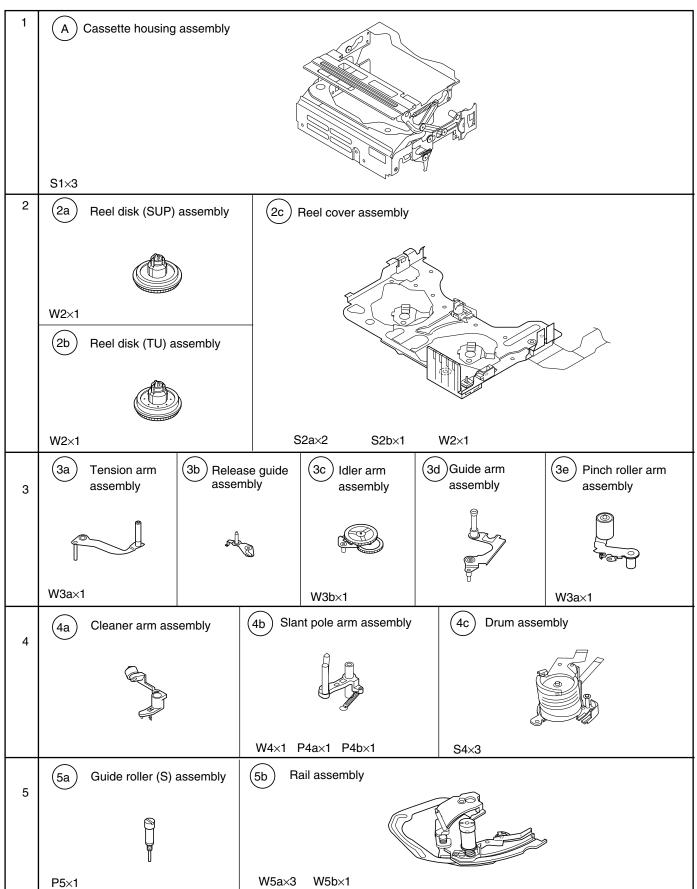


Table 2-7-1a

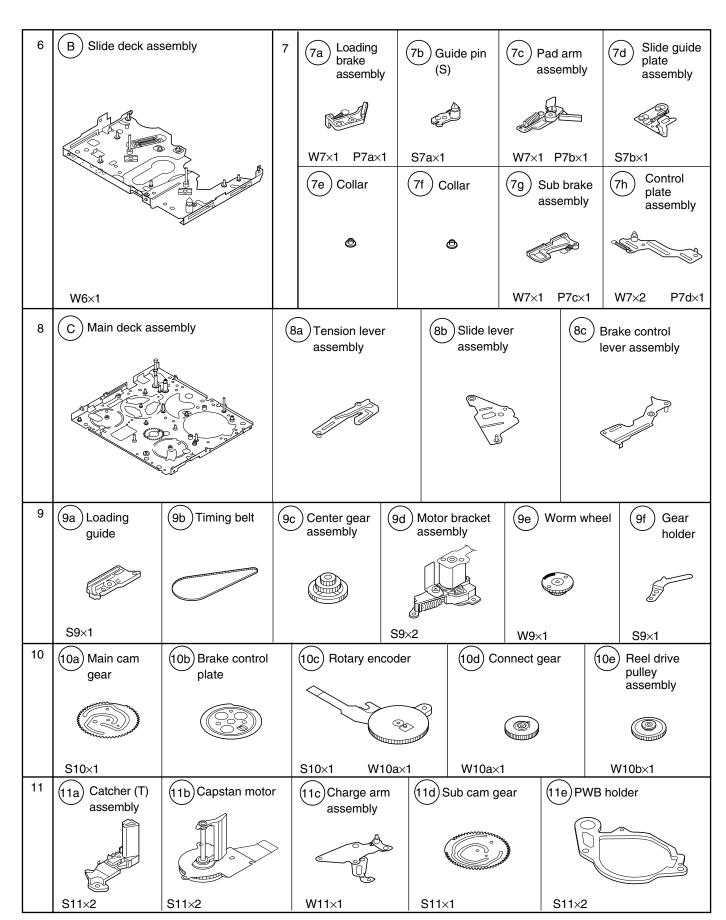


Table 2-7-1b

2.8 JIG CONNECTOR CABLE CONNECTION

Remove one screw (1) first and the cover (JIG) next.

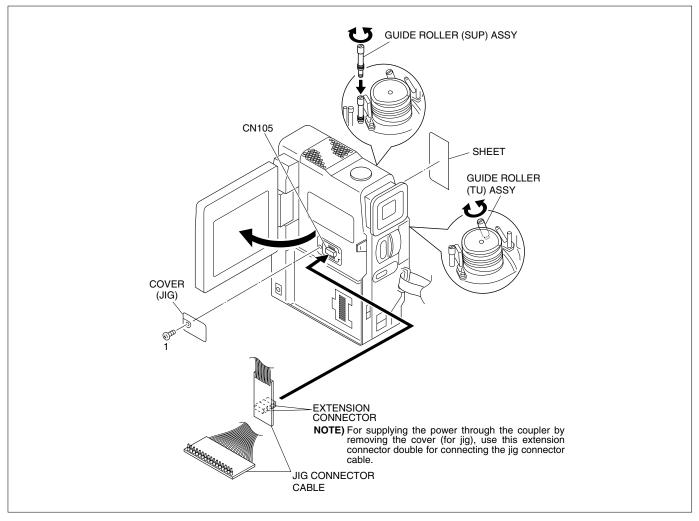


Fig. 2-8-1 Jig connector cable connection

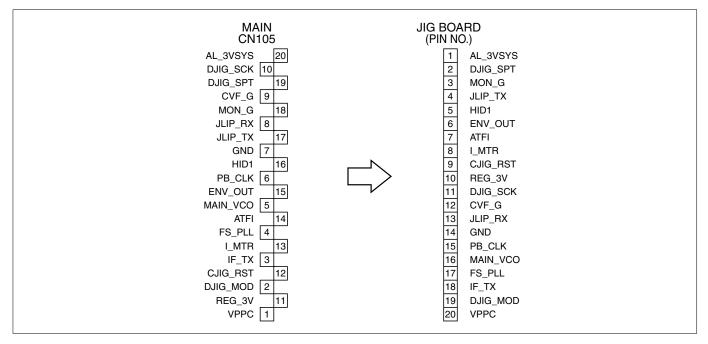


Fig. 2-8-2 Jig connector cable schematic diagram

SECTION 3 ELECTRICAL ADJUSTMENT

3.1 PRECAUTION

1. Precaution

Both the camera and deck sections of this model needs a personal computer for adjustment except simple adjustment with potentiometers. If some of the following parts is replaced for repair or other reason, the repaired set must be adjusted with a personal computer.

- OP block
- E²PROM (IC1003 of MAIN board)
- E. VF
- MONITOR
- E²PROM (IC7603 of MONITOR board)

In the event of malfunction with electrical circuits, troubleshooting with the aid of proper test instruments most be done first, and then commence necessary repair, replacement and adjustment, etc.

- 1. In case of wiring to chip test points for measurement, use IC clips, etc. to avoid any stress.
- Since connectors are fragile, carefully handle them in disconnecting and connecting.

2. Required test equipment

- 1. Color TV monitor.
- Oscilloscope (dual-trace type, observable 100 MHz or higher frequency)

Note: It is recommended to use one observable 300 MHz or higher frequency.

- 3. Digital voltmeter
- 4. Frequency counter (with threshold level adjuster)
- 5. Personal computer

3. Tools required for adjustments

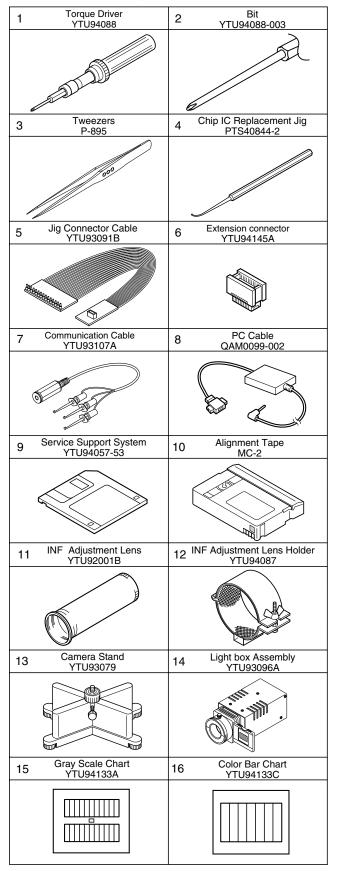


Table 3-1-1

1. Torque driver

Be sure to use to fastening the mechanism and exterior parts because those parts must strictly be controlled for tightening torque.

Bit

This bit is slightly longer than those set in conventional torque drivers.

3. Tweezers

To be used for removing and installing parts and wires.

4. Chip IC replacement jig

To be used for adjustment of the camera system.

5. Jig connector cable

Connected to CN105 of the main board and used for electrical adjustment, etc.

6. Extension connector

Connect this extension connector to the connector of the jig connector cable for extending the cable connector.

Note: For supplying the power through the coupler by removing the cover (for jig), use this extension connector double for connecting the jig connector cable.

7. Communication Cable

Connect the Communication cable between the PC cable and Jig connector cable when performing a PC adjustment.

8. PC cable

To be used to connect the VideoMovie and a personal computer with each other when a personal computer is used for adjustment.

9. Service support system

To be used for adjustment with a personal computer.

10. Alignment tape

To be used for check and adjustment of interchangeability of the mechanism.

11. INF adjustment lens

To be used for adjustment of the camera system.

12. INF adjustment lens holder

To be used together with the camera stand for operating the VideoMovie in the stripped-down condition such as the status without the exterior parts or for using commodities that are not yet conformable to the interchangeable ring.

13. Camera stand

To be used together with the INF adjustment lens holder.

14. Light box assembly

To be used for adjustment of the camera system.

15. Gray scale chart (for Light box assembly)

To be used for adjustment of the camera system.

16. Color bar chart (for Light box assembly)

To be used for adjustment of the camera system.

3.2 SETUP

1. Setup for electrical adjustment with personal computer.

NOTE: Remove one screw (1) first and the cover (JIG) next.

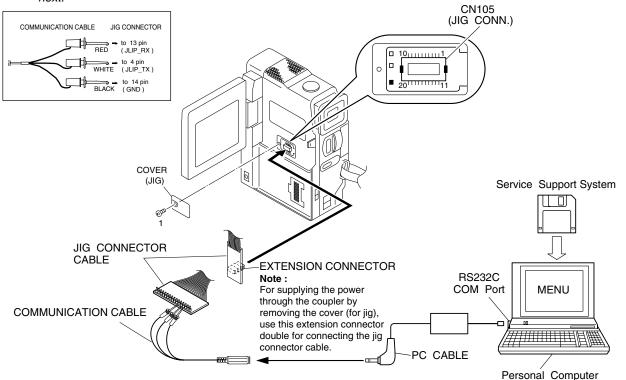


Fig. 3-2-1 Connection for Service support system